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Abstract. The distribution function of a fluid is determined by the singularities of its Fourier 
transform. Whereas the distribution functions at long range are well described by the 
contributions of those poles closest to the real axis, the short-range behaviour involves 
contributions from an infinite series of poles. For Percus-Yevick hard spheres in one and 
three dimensions, the series of discontinuities in the distribution function and its derivatives 
are shown to derive from the asymptotic distribution of the infinite series of poles in the 
Fourier transform of the distribution function. 

1 Introduction 

The structure of a disordered fluid of spherically symmetric particles may be described 
in terms of the two-particle distribution function p2(12) defined in the canonical 
ensemble by: 

where 4(i, j )  is the two-particle potential and QN is the canonical partition function. If 
the system has particle density p and no external field then the correlation function g ( r ) ,  
the total correlation function h ( r )  and the direct correlation function c ( r )  are related to 
~ ~ ( 1 2 )  by 

p2( r l ,  r2) = p 2 g h  - r211, (1 .2) 

h ( r ) = g ( r ) - 1  (1.3) 

and the Ornstein-Zernike (OZ) relation 

where d is the dimensionality of the system. The definition of c ( r )  via equation (1.4) 
allows c ( r )  to be identified as a functional derivative or a sum of graphs. This in turn 
allows the derivation of other approximate relations between h ( r )  and c ( r ) ,  these 
second relations being called 'closures'. As examples we mention the Percus-Yevick 
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2220 J W Perram and E R Smith 

(PY) hypernetted chain (HNC) and mean spherical approximation (MSA) closures. The 
pair of relations between h(r)  and c(r)  allows the calculation of both. 

Numerical and analytic methods of solution of equation (1.4) plus a closure proceed 
(either explicitly or implicitly) by studying the Fourier transforms 

The function h ( r )  may then be found as a one-dimensional Fourier transform inverse of 
L ( k ) .  The relation of h(r)  to pz( l ,  2) shows that h ( k )  is simply related to the structure 
factor of the system. The transform inverse may be determined from the singularities of 
& ( k )  in the complex k-plane because in a disordered fluid &(k) may be expected to be 
bounded as k 3 00. 

For many systems for which a solution is known, the singularities of &(k)  are an 
infinite series of poles. As examples we mention PY hard spheres (Baxter 1 9 6 8 ~ )  and 
PY sticky hard spheres (Baxter 1968b), the mean spherical approximation for hard 
spheres with a potential of the form 4 ( r )  = A  exp(-rr)/r (H0ye and Stell 1976) and the 
rigorous theory of hard spheres at sufficiently low density (Abraham and Kunz 1977). 
Another example is the two-dimensional Ising model, though there, only the closest 
singularity to the real. k-axis is known to be a pole (Abraham 1978). The singularities 
are not always poles: in the MS.A for hard spheres with potentials of the form 
A exp(-tr)rP-' and p not a positive integer, there are branch points of & ( k )  at k = *iz 
(Smith 1979). Whichever form the singularities take, the asymptotic form of h(r)  for 
large r is determined by those singularities of L ( k )  in the lower half k plane which are 
closest to the real k axis. 

In this paper, we show how the behaviour of h(r) for small r can be determined, in 
part, by all the singularities of h^(k) together. We have in mind, in particular, the 
discontinuities present in h ( Y )  for any system whose interaction potential is such that the 
Boltzmann factor is discontinuous. Our purpose in doing this is partly an intrinsic 
interest in the role of the poles of the structure factor of a system in determining h (r) at 
short range, but also because we hope it will allow us to develop a method for 
numerically determining solutions of equation (1.5) and an approximate closure. This 
appears possible because, as we shall see, we require only the very :implest approxima- 
tions to the position and residues of the infinite set of poles of h ( k )  to calculate the 
discontinuities in h (r) exactly. It appears possible to find accurate numerical informa- 
tion on the closest few poles of i ( k )  to the real k axis for a wide range of problems, thus 
allowing the calculation of an h (r) which is accurate except near discontinuities. The 
behaviour at discontinuities may then be calculated from the asymptotic nature of the 
infinite set of the poles of l ( k ) .  This asymptotic nature can often be calculated in a very 
simple way for surprisingly complicated systems. 

In 3 2 we study one-dimensional hard rods via the (exact) PY method. We find 
expansions for the poles and residues of L ( k )  and show how the first terms in the 
expansions for these poles and residues determine the discontinuity in h(r)  at the 
hard-rod width. In 9 3 we repeat the analysis for PY hard spheres. Section 4 discusses the 
accuracy of the expansions and also show how h(r) is accurately modelled by the 
contribution of a small number of poles of h"(k), suggesting that our proposed solution 
method is of some use. 
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2. One-dimensional hard rods 

In one dimension, the Ornstein-Zernike relation takes the form 
m 

h ( X I  = c ( x )  + P I_, dY ‘ 4lY’l)h (Ix - Y ’ I )  (2.1) 

with h(lxl)=-l for O<lx l<l  and c(lxl)=O for Ixl>l. Although Chen (1975) has 
presented the details of the application of Baxter’s (1968a) method to this problem, we 
give here, for the guidance of the reader, a quick resum6 of the principal results. Fourier 
transformation of (2 , l )  and a little subsequent rearrangement gives 

l + p 6 ( k ) =  I/A(k)=[l-pc*(k)]-’ (2.2) 
where, in this case, 6 ( k )  and 2(k) are simple one-dimensional exponential Fourier 
transforms of h(lx1) and ~(1x1) respectively. A careful analysis of l n d ( k )  shows that 

(i) A ( k )  = d(k)d(-k) (2.3) 

(ii) d(k) = 1 + O ( l / k )  (2.4) 

where d(k) is an entire function free of zeros in the upper half k plane. 

as lk l+mwith imkzO.  
(iii) 1 - d(k) has an inverse Fourier transform which is only non-zero in 0 < x s 1. 

. rcc 
1 

p q ( x )  = - J exp(-ikx)[l - Cj(k)]  dk 
27r --CO 

(iv) 

It is readily shown that the solution of equation (2.6) is the solution of the 
diff erential-diff erence equation 

wi thh(x)=-1  o n O < x < l , a n d  

Elementary integration also shows that 

ip expik-1 d(k) = 1 -- 
1-p  k ’ 

(2.9) 

Values of h(x) for x 2 1 may be obtained numerically using either standard methods for 
the solution of equation (2.7) or a simple algorithm for equations of the type of (2.6) 
(Perram 1975). 

Using equation (2.3) in equation (2 .2 )  and taking the inverse transform we find 

for x > 0, where the sum is over the zeros k ,  of 

(2.10) 

d(k) = 0. (2.11) 
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If equation (2.11) could be solved analytically, equation (2.10) would represent a 
closed-form analytic expression for h ( x ) .  Equation (2.9) does not appear to be soluble 
in closed form, so we develop an expansion of its roots for large lkl. The equation may 
be shown to have exactly one root in the lower half k plane in each strip (2n - 1 ) ~  < 
Re(k) < (2n - 4 ) ~  for n 3 1 and for each such k, = U,, -iTn there is another root 
--k: = -  g,  - i ~ ,  so that equation (2.10) may be written 

OD 

ph ( X  ) = 1 {exp(-ik,x )[Q‘(kn 16 (- kn )I-’ 
n = l  

+ exp(ik:x)[Q’(-k: ) Q ( k :  )I-’}, x > o .  

The roots of equation (2.9) may be expanded for large lkl and we find 

A ln(2n - $ ) T A ] -  1 
(2n -&)TA 

k, - (2n - 5 ) ~  - 

A + 1 - A  ln[(2n - : )TA]  
-.( [(2n - $ ) T A ] ~  

- i{ln[(2n -$)TA] + 7/[(2n -:)TA 1’1 

(2.12) 

(2.13) 

where 

~=~A2{1n[(2n-~).rrA]}’-(A +A2)ln[(2n-t)~A]+A +& (2.14) 

and 

The expansion in equation (2.13) may be expected to be most inaccurate for n = 1. We 
expect the accuracy to vary with p via the dependence on A and In A .  Thus for p very 
small, or close to one we expect the results to be less accurate than the results for 
intermediate p. In table 1 we list exact values of Re(k,)/.rr and Im(k,) (Cummings 
1978, private communication) together with estimates of Re(k,) and Im(k,) from 

Table 1. Exact and asymptotic estimates of k,.  1st two columns: exact numerical results. 
2nd two columns: 1st two terms in Re(k,) and equation (2.13). 3rd two columns: all of 
equation (2.13). 

n = l  
77 Re(k,) /x  -Im(k,) Re(k,)/rO -Im(k,)O Re(k,)/xl -Im(k,)l 

0.2 1,313652 
0.5 1,463321 
0.8 1.687 204 

n = 3  
0.2 5.426658 
0.5 5.465 856 
0.8 5.545 692 

n = 6  
0.2 11.468428 
0.5 11.477 195 
0.8 11.515 795 

2.985 99 
1.532 09 
0.465 447 

4.249 13 
2.849 01 
1.481 80 

4.978 30 
3.587 66 
2.203 39 

1.3185 
1.4628 
1.759 

5.426 57 
5.465 92 
5.5465 

11.458 38 
11.477 21 
11.515 85 

2.936 
1,550 19 
0.164 

4.2358 
2.8494 
1.4632 

4.973 37 
3.587 07 
2.200 79 

1.3232 
1.463 38 
1.594 

5.427 30 
5.465 92 
5.5794 

11.458 5 5  
11.477 21 
11.515 87 

2.978 
1.532 23 
0.668 

4.249 03 
2.849 01 
1,4825 

4,978 30 
3.587 66 
2.203 40 



Properties o f  the hard sphere fluid 2223 

equation (2.13) for n = 1 , 3 , 6  and p = 0.2,0.5,0.8.  The results are best at p = 0.5 with 
the accuracy improving with increasing n. It may be noted that the expansions for 
Im(k,) are much more accurate than for Re(k,) in all cases. 

As we anticipate that the discontinuities in h ( x )  are determined by the gross features 
of the distribution of the poles of i ( k )  we consider 

kn,A = (2n -i)n-i ln[(2n - l )nh]  

and 

the asymptotic forms 

(2.16) 

(2.17) 

where the functions Q h ( k , ) ,  dA(-k,,) are the leading order terms in the asymptotic 
expansion of Q'(k , ) ,  d(-k,) for large lkl. We now show that hA(x)  has precisely the 
discontinuity of h ( x )  at x = 1. Thence, the discontinuity in the nth derivative of h A ( x )  at 
x = n + 1 is equal to the nth derivative of h ( x ) .  

For large Ikl, equation (2.9) shows that 

exp(ik,) - -ih k,. (2.18) 

A little calculation then shows 

@ ( k , ) d ( - - k , )  = -i[l +Ok,'] 

so that 

&(kn)&( -kn)  = 4 .  (2.19) 

Substitution of this result and the leading order real and imaginary parts of k ,  from 
equation (2.13) into equation (2.17) then gives 

(2.20) 

We now study the discontinuity in hA(x)  at x = 1. Equation (2.20) readily gives 

1 2 
hA(1 + ) - h A ( l - )  =-lim-sin 2n77~. 

l - P e + o n  

Since 2/77 C:=p=l l / n  sin 2n77.5 is a Fourier series for the function 

1 - €12, 

we have 

1 
hA(1+) - ha( 1 - )  = -, 

1-P 

(2.21) 

(2.22) 

(2.23) 

which agrees precisely with the discontinuity in h ( x )  at x = 1,  as may be seen from 
equation (2.8) and the fact that h ( 1 - )  = -1 .  
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3. Percus-Yevick hard spheres 

For this system we define 
m 

h*(k) = 27r j  exp(ikr)J(lrl) dr 
-m 

and 
1 

t ( k )  = 47r lo cos kr S(r)  dr 

where 
m m 

J(r) = s h ( s )  ds;  S( r )  = I sc(s) ds 
r r 

(3.1) 

(3.2) 

(3.3) 

with h(s) = -1 for 0 s s < 1 and c(s) = 0 for s > 1. The analogue of equation (2.2) is 
then 

1 +ph*(k)  = l / d ( k )  = [d(k)d(-k)]-l (3.4) 

as has been shown by Baxter (1968b). The function d(k) is analytic and free of zeros in 
the upper half k plane and 

1 

d(k) = 1 - 2 q  I exp(ikr)q(r) dr (3.5) 
0 

and 

otherwise 

where 77 = k7rp. For r > 0, Fourier inversion of equation (3.4) gives 

The analogue of equation (2.6) for this system is 

q(t)J(lr - [I) dt. 
1 

J ( r )  = q(r) + 1277 b 
Differentiation of (3.8) gives 

1 

rh(r) = -q'(r) + 1277 (r - t )h( / r  - tl)q(t) dt  

(3.7) 

(3.9) 

whence one may deduce 

h ( l  + ) - h ( 1 - )  = q ' ( l - )  = i ( 2 + 7 7 ) ( 1 - 7 p  (3.10) 

and a similar discontinuity in each h'"'(r) at r = n + 1. We now show that the asymptotic 
form of the residue series in equation (3.7) gives precisely this discontinuity. 
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Using equation (3.5,6) the equation for the k, may be written 

exp(ik) iexp(ik) +--- 6i 18 2i 
2 ,+--0 

pk3  Ak k A pk3-  
d ( k ) =  1 - 7 -  

P k  
where 

(3.11) 

(3.12) 

Asymptotic expansions for roots of (3.11) appear to be best calculated by writing 

kn = kn.0 + kn (3.13) 

where k,,o are solutions of 

cLk: = exp(iko). 

This procedure yields 

where 

for the roots of d(k) = 0 for which Re(k) > 0. If kn is a root, then so is -k:. 
As for the one-dimensional system, we introduce JA(r) by 

+ exp(ik:,~r[dk (-k: )dA(k: )I-'}. 

dk(k,)dA(-k,) = -i[1 +O(k,')] 

Fairly simple manipulations with equation (3.1 1) show that 

and we use the asymptotic form 

kn,A = 2 n r  - 2i ln(2n71.4). 

These equations then give 
W 

1 2 q ~ ~ ( r )  = 2 1 (4n2rZ,u- '  cos 2nrr .  
n = l  

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

This is continuous at r = 1, as it should be. But, using rhA(r) = -.TA (r) we obtain, on 
differentiating equation (3.20), letting r + 1 +, 1 - and using equation (2.21) again 

hA(1 +) - hA(1 - )  =$(2+ 7/)(1- q)-2 (3.21) 

This is exactly the discontinuity in h(r)  noted in equation (3.10). 
In table 2 we list exact values for the real and imaginary parts of kl (Perry and 

Throop 1972) and the values of kl ,  k3 and ks calculated from equations (3.15; 3.16) for 
various values of 77. 
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Table 2. Exact and asymptotic values of Re(kl) and Im(kl) for the hard-sphere system for a 
range of values of pR3, R =hard sphere diameter. 

pR3 Exact Re(kl) -Exact Im(kl) Asymptotic Re(kl) -Asymptotic Imk, 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

4.7608 
5.1156 
5.3982 
5,6507 
5,8887 
6.1204 
6.3506 
6.5828 

4.0715 
3.0934 
2,4865 
2,0338 
1.6674 
1.3576 
1.0894 
0.8549 

4,795 
5.1487 
5.427 
5.676 
5,914 
6.148 
6.384 
6.626 

4,065 
3.1197 
2,520 
2.064 
1.688 
1,369 
1,077 
0.818 

4. Discussion 

A feature of the data presented in tables 1 and 2 is the accuracy of the asymptotic 
expansions used, even for the poles closest to the origin. Comparison of the exact and 
asymptotic values of kl for hard spheres in three dimensions shows that the asymptotic 

. 
Figure 1. Plot of exact h ( r )  and h ( r )  from five poles and twenty poles for 7 = 0.1 and 0.4, 
curve, exact results; broken curve, 20 poles; dotted curve 5 poles. 
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Re(kl) is in error by less than 1 YO for the densities tabulated. The error in Im(kl) is less 
than 4% for the densities tabulated. The error in more distant poles can be expected to 
be much less, as is shown in table 1 for the one-dimensional hard-rod system. 

While an efficient algorithm (Perram 1975) exists for calculating h ( r )  for the models 
studied in this paper, this is not true for other more complicated systems. In this paper 
we have shown how the discontinuous part of h ( r )  may be derived from a knowledge of 
the leading term of the zeros of &k) .  This suggests that h(r )  may be approximately 
represented as a sum of the discontinuous hA(r)  introduced in § §  2 and 3 plus a 
contribution from a small number of poles of $ ( k )  which are close to the origin. 
Alternatively, we may approximate h ( r )  using a finite number of poles. In figure 1 we 
plot h ( r )  exactly and from 5 and 20 poles for 7 = 0.1 and 7 = 0.4. It may be seen that 
for r > 1.2, the five-pole form is very accurate while the twenty-pole form is accurate for 
r > 1.1. For r < 1 the pole expansion is inaccurate, reflecting problems with Gibbs’ 
phenomenon. The whole pole series is necessary to give the discontinuity at r = 1.0 
accurately. 
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